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1. Introduction

When a sound is heard by a single, omnidirectional microphone, it is impossible to tell from

which direction or from how far away the sound originated. That is, if this sound was a gunshot,

the shooter could be anywhere. This situation is illustrated in figure 1. However, when several

microphones are present, we are sometimes able to estimate the location of the source of the

sound. To simplify the problem, we make several assumptions. First, we assume that the

observers have a direct line of sight to the shooter. That is, there are no occluding objects

(building, trees, vehicles, etc.) between the observer positions and the shooter position. Second,

we assume that the curvature of the earth is negligible (a safe assumption at ballistic threat

ranges). Third, we assume that the air temperature is constant over both time and position so that

the sound of the gunshot travels at a constant speed. Finally, we treat the situation as a

two-dimensional (2-D) problem, that is, we assume the shooter and all of the observers lie on the

same plane.

In section 2.1, we discuss the geometry of the situation at a conceptual level, and then in section

2.2 we introduce the corresponding mathematics and discuss the details of the solution.

Figure 1. With only one microphone, it is not possible to determine

the distance or direction of the origin of a sound. The

black circles indicate the spherical propagation of the

sound from two possible sources of a gunshot.
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2. Hyperbolic Lines of Position Solution

With two observers of the same sound, we can constrain the potential origin of the sound, S, to lie

on a hyperbola. The geometry of the situation is shown in figure 2.

Figure 2. With two listeners (blue circles), we can only narrow

down the possible shooter position to lie on a

hyperbola (both branches of the hyperbola are shown

as the green curve).

It is only with at least three observers that we can determine the actual position of the shooter.

From each pair (there are
(

N

2

)

pairs) of listeners, we can produce a hyperbola constraining the

position of the shooter. In figure 3, we show the three pairs and corresponding hyperbolic

constraints in a three-listener scenario.

Additionally, since we know the order in which the listeners received the sound (as explained in

section 2.1), we can restrict the shooter position to one branch of each hyperbola, as shown in

figure 4.

The only point that satisfies these three constraints simultaneously is the intersection of these

hyperbolas, which is the position of the shooter, as shown in figure 5. We note that in an

error-free system, the intersection of each pair of hyperbolas is exactly the same point. However,

in a system with errors (in either receive time, clock synchronization, or global positioning

system [GPS] localization), these points may not be coincident and an averaging procedure must

be used to determine the shooter location, as shown in figure 6.
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Figure 3. The hyperbolas constraining the shooter position generated by each pair

of listeners. In each subfigure, the two listeners that generated the

hyperbola are shown in blue.

Figure 4. The branch of each hyperbola constraining the shooter position generated

by each pair of two listeners. In each subfigure, the two listeners that

generated the hyperbola are shown in blue.

2.1 Determining a Hyperbola From Two Observers

We now proceed to give a mathematical explanation of how to compute these hyperbolae and

their intersections. We denote the ith observer position as Oi, and the time that the sound arrives

at Oi by ti. By computing the difference between the time arrival of the sound at the two

receivers as t∆ = |ti − tj|, we can determine that the shooter must be at a position such that the

difference in distance between the shooter and observer i and the shooter and observer j is

d = t∆v, where v is the speed of sound in air at the given temperature, typically 343.2 m/s (at 20
◦C). The description of this situation is exactly the definition of a hyperbola—the locus of points

whose difference in distance from a pair of points (the foci) is a constant. Here, the foci are the

two observers, and the constant difference is d. We can write this as

∣

∣|Oi − S| − |Oj − S|
∣

∣ = d. (1)
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Figure 5. The intersection of the hyperbolas generated

by each pair of listeners is the position of the

shooter (shown as a purple asterisk).

Figure 6. The branch of each hyperbola constraining the shooter

position generated by each pair of two listeners. In each

subfigure, the two listeners that generated the hyperbola

are shown in blue.

The Euclidean distance between two points p1 and p2 is

distance =
√

(p1x − p2x)2 + (p1y − p2y)2. (2)

Therefore, we can write our situation as

∣

∣

∣

∣

√

(Oix − Sx)2 + (Oiy − Sy)2 −
√

(Ojx − Sx)2 + (Ojy − Sy)2

∣

∣

∣

∣

= d. (3)
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If we order Oi and Oj such that

√

(Oix − Sx)2 + (Oiy − Sy)2 >
√

(Ojx − Sx)2 + (Ojy − Sy)2 (4)

we can remove the absolute value to obtain

√

(Oix − Sx)2 + (Oiy − Sy)2 −
√

(Ojx − Sx)2 + (Ojy − Sy)2 = d. (5)

There is tremendous manipulation necessary to write this equation in general quadratic form

(Ax2 + Bxy + Cy2 + Dx + Ey + F = 0). The steps are not all intuitive, so we detail the

procedure and rationale step-by-step. First, add
√

(bx − x)2 + (by − y)2 to both sides of the

equation so that when we square both sides we will not eventually introduce quartic terms:

√

(ax − x)2 + (ay − y)2 =
√

(bx − x)2 + (by − y)2 + d. (6)

Square both sides:

(ax − x)2 + (ay − y)2 = (bx − x)2 + (by − y)2 + 2d
√

(bx − x)2 + (by − y)2 + d2. (7)

Expand:

a2

x−2xax+x2+a2

y−2ayy+y2 = b2

x−2xbx+x2+b2

y−2byy+y2+2d
√

(bx − x)2 + (by − y)2+d2.

(8)

Cancel x2 and y2 terms that occur on both sides of the equation:

a2

x − 2xax + a2

y − 2ayy = b2

x − 2xbx + b2

y − 2byy + 2d
√

(bx − x)2 + (by − y)2 + d2. (9)

Prepare to square both sides again by isolating the remaining square root:

a2

x − 2xax + a2

y − 2ayy − b2

x + 2xbx − b2

y + 2byy − d2 = 2d
√

(bx − x)2 + (by − y)2. (10)

Group terms on the left side into the form Jx + Ky + L to make squaring easier:

(

(−2ax + 2bx)x + (−2ay + 2by)y + (a2

x + a2

y − b2

x − b2

y − d2)
)

= 2d
√

(bx − x)2 + (by − y)2

(11)
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For notational convenience, assign J = −2ax + 2bx, k = −2ay + 2by,

L = a2

x + a2

y − b2

x − b2

y − d2 so this can be written as

Jx + Ky + L = 2d
√

(bx − x)2 + (by − y)2 (12)

Square both sides:

(Jx + Ky + L)2 = 4d2
(

(bx − x)2 + (by − y)2
)

(13)

Expand:

J2x2+JxKy+JxL+KyJx+K2y2+KyL+LJx+LKy+L2 = 4d2
(

b2

x − 2xbx + x2 + b2

y − 2yby + y2
)

(14)

Combine terms on the left and expand the expression on the right:

J2x2 +K2y2+2JxKy+2JxL+2KyL+L2 = 4d2b2

x−8d2xbx+4d2x2 +4d2b2

y−8d2yby +4d2y2

(15)

Combine all terms (x2, xy, y2, x, y, constant):

(J2−4d2)x2+(2JK)xy+(K2−4d2)y2+(2JL+8d2bx)x+(2KL+8d2by)y+(L2−4d2b2

x−4d2b2

y) = 0

(16)

Substitute the defined values of J , K, and L:

(

(−2ax + 2bx)
2 − 4d2

)

x2+ (17)

(2(−2ax + 2bx)(−2ay + 2by))xy+ (18)
(

(−2ay + 2by)
2 − 4d2

)

y2+ (19)
(

2(−2ax + 2bx)(a
2

x + a2

y − b2

x − b2

y − d2) + 8d2bx

)

x+ (20)
(

2(−2ay + 2by)(a
2

x + a2

y − b2

x − b2

y − d2) + 8d2by

)

y+ (21)
(

(a2

x + a2

y − b2

x − b2

y − d2)2 − 4d2b2

x − 4d2b2

y

)

=0 (22)

6



From here, we can see that in the general bivariate quadratic polynomial form of

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, the coefficients are

A = (−2ax + 2bx)
2 − 4d2 (23)

B = 2(−2ax + 2bx)(−2ay + 2by) (24)

C = (−2ay + 2by)
2 − 4d2 (25)

D = 2(−2ax + 2bx)(a
2

x + a2

y − b2

x − b2

y − d2) + 8d2bx (26)

E = 2(−2ay + 2by)(a
2

x + a2

y − b2

x − b2

y − d2) + 8d2by (27)

F = (a2

x + a2

y − b2

x − b2

y − d2)2 − 4d2b2

x − 4d2b2

y (28)

2.2 Determining The Shooter Location

For every pair of observers (there are
(

NO

2

)

, where NO is the number of observers) we can derive a

hyperbola as we did in section 2.1. For now we focus on the hyperbola Q1 formed from the

information at O0 and O1, and the hyperbola Q2 formed from the information at O1 and O2.

(Note: Additional hyperbolae can be formed using other pairs of observers in an identical

fashion. In the next section, we show how to combine the information from these multiple pairs

of hyperbolas.) In the noise-free case, the point of intersection of Q1 and Q2 is the position of the

shooter. We discuss the case with noise in section 2.3.

We can write the equation of the hyperbola as

Ax2 + Bxy + Cy2 + Dx + Ey + F =
(

x y 1
)

Qi







x

y

1






= 0 (29)

where

Qi =







A B/2 D/2

B/2 C E/2

D/2 E/2 F






(30)

Generally, there are four intersection points of two hyperbolas Q1 and Q2. It is difficult to

directly find these intersection points from the general forms of the hyperbolas. However, there

is an entire family of conics that pass through the same intersection points, namely, any linear

combination of the two equations

µQ1 + λQ2. (31)
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In this set of conics (more details of this family of conics can be found in reference 1, there are up

to three degenerate conics, which are simply a pair of straight lines rather than the typical curves

of a hyperbola. We take advantage of this by finding these degenerate equations and using them

to perform the intersection computations, as intersecting a linear function with a general quadratic

function is straightforward. We can identify a degenerate conic because the determinant of its

coefficient matrix is zero. Therefore, to find the degenerate conics of the family we are interested

in, we set

det (µQ1 + λQ2) = 0. (32)

Without loss of generality, we can set µ = 1 so our problem becomes solving

det (Q1 + λQ2) = 0 (33)

for λ. The determinant expression is a cubic function in λ. That is,

det(Q1 + λQ2) =
3

∑

k=0

akλ
k (34)

If we write the matrix

Q1 + λQ2 =







a b c

d e f

g h i






(35)

we can write

det(Q1 + λQ2) = aei + bfg + cdh − ceg − bdi − afh (36)

Each of a, b, c, d, e, f, g, h, i have the form a1 + λa2. For example,

aei = (a1 + λa2)(e1 + λe2)(i1 + λi2). Expanding this, we get

aei =a1e1i1 + a1e1i2λ + a1e2i1λ + a1e2i2λ
2+ (37)

a2e1i1λ + a2e1i2λ
2 + a2e2i1λ

2 + a2e2i2λ
3 (38)

=a1e1i1 + (a1e1i2 + a1e2i1 + a2e1i1)λ+ (39)

(a1e2i2 + a2e1i2 + a2e2i1)λ
2 + a2e2i2λ

3 (40)

Following this pattern, we can compute the coefficients ak of the cubic equation resulting from

equation 34 as follows. We use parenthesis to indicate the terms that come from each term in the

8



determinant expansion.

a0 =(a1e1i1) + (b1f1g1) + (c1d1h1) − (c1e1g1) − (b1d1i1) − (a1f1h1) (41)

a1 =(a1e1i2 + a1e2i1 + a2e1i1) + (b1f1g2 + b1f2g1 + b2f1g1)+ (42)

(c1d1h2 + c1d2h1 + c2d1h1) − (c1e1g2 + c1e2g1 + c2e1g1)− (43)

(b1d1i2 + b1d2i1 + b2d1i1) − (a1f1h2 + a1f2h1 + a2f1h1) (44)

a2 =(a1e2i2 + a2e1i2 + a2e2i1) + (b1f2g2 + b2f1g2 + b2f2g1)+ (45)

(c1d2h2 + c2d1h2 + c2d2h1) − (c1e2g2 + c2e1g2 + c2e2g1)− (46)

(b1d2i2 + b2d1i2 + b2d2i1) − (a1f2h2 + a2f1h2 + a2f2h1) (47)

a3 =(a2e2i2) + (b2f2g2) + (c2d2h2) − (c2e2g2) − (b2d2i2) − (a2f2h2) (48)

We then compute the roots (r1, r2, and r3) of this cubic equation using the procedure described in

section 5.6 of reference 2.

Selecting the root that is most distant from the other two (to avoid ill-conditioning [1]), we can

now write the coefficient matrix for the degenerate conic as

QD = Q1 + r1Q2 (49)

The two lines that constitute the degenerate conic can be written as aix + biy + ci = 0, where

i = 1, 2. Denote the vector of these coefficients as

ui =







ai

bi

ci






. (50)

The entries of ui can be found using the eigenvectors of the non-zero eigenvalues of QD.

Specifically,

u1 =
√

|λ1|v1 +
√

|λ2|v2 (51)

and

u2 =
√

|λ1|v1 −
√

|λ2|v2. (52)

Once we have u1 and u2, we can intersect these lines with both of the original conics

independently to obtain up to four points of intersection (potentially two intersections with each

9



conic). Solving ax + by + c = 0 for x, we obtain

x =
−by − c

a
(53)

Substituting this into the general form of the conic equation, we obtain

A

(

−by − c

a

)2

+ B

(

−by − c

a

)

y + Cy2 + D

(

−by − c

a

)

+ Ey + F = 0 (54)

Collecting y2, y, and constant terms, we can write this equation as

(

Ab2

a2
−

bB

a
+ c

)

y2 +

(

2Abc

a2
−

Bc

a
−

Db

a
+ E

)

y +

(

Ac2

a2
−

Dc

a
+ F

)

= 0. (55)

Substituting this into the expression for y from the conic, we have

y =
−(B−by−c

a
+ E) ±

√

(B−by−c

a
+ E)2 − 4(C)(A(−by−c

a
)2 + D−by−c

a
+ F )

2C
. (56)

These points (there are up to two because of the ± in the expression for y) (x, y) are intersections

of the hyperbolae. The (up to) other two points can be found by intersecting the degenerate conic

with the other hyperbola.

2.3 Selecting the Intersection that is the Shooter Position

There are many intersections of the hyperbolas generated by all pairs of listeners. We can discard

half of these intersections by checking their relative distances to the listeners, as they are not

consistent with the receive times that we observed (the receive time differences are negative). For

example, if t1 > t2 but |detected− S1| < |detected− S2|, this detected position is inconsistent.

Furthermore, we can discard additional intersections if they are not intersections of all of the pairs

of hyperbolas. Since there is typically error introduced in the simulation, as well as an

always-present numerical computation error, this discarding is done using an epsilon test. An

intersection is removed if its distance to all hyperbolas is not less than ε.

Computing the distance from a point to a hyperbola is not a trivial task. This distance is defined

as the distance from the point to the closest orthogonal projection on the hyperbola. To find these

orthogonal projections, we again use the machinery of degenerate conics. We refer the reader to

reference 3 for a complete explanation of this procedure. Denote a point not on the hyperbola as

10



a. In our case, a is each of the intersections, successively. We compute a matrix B as

B =







−C12 C11 −ayC11 + axC12

−C22 C12 −ayC12 + axC22

−C23 C13 −ayC13 + axC23






(57)

and from it

D =
B + BT

2
. (58)

Now we find the intersections of the conics given by matrices C and D as we have done in the

previous section. Out of these intersections (at most four), we compute the closest one to a,

which we call p. This is the closest orthogonal projection of a onto the hyperbola. We then

simply compute the distance from a to p and this is the distance from a to the hyperbola.

Unfortunately, with only three listeners, we are not guaranteed to arrive at a unique solution.

That is, there may be more than one point that is an intersection of all hyperbolas and is

physically consistent with the situation. However, with at least four listeners, where no three, are

collinear, this ambiguity is removed.

Finally, assuming we are in an unambiguous case, we have identified a collection of points that

are all supposed to be coincident (in the error-free case). We can simply compute the spatial

average of these points to arrive at a final estimation of the shooter position.

3. Conclusions

In this report we have detailed a solution to the hyperbolic lines of position problem that does not

require any coordinate transformations. This allows us to compute the location of a shooter given

that the shot is heard by at least three observers. Though we have made assumptions about the

environment and restricted the discussion to the two dimensional case, the techniques presented

provide a direction for work on these problems in the future.
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